1)Let x be the number and its reciprocal be 1x
sum of a number and its reciprocal=x+1x=174
⇒4x2−17x+4=0
⇒4x2−16x−x+4=0
⇒4x(x−4)−(x−4)=0
⇒(x−4)(4x−1)=0
⇒x=4,14
2)Let x and y be the numbers
sum of two numbers=x+y=8
difference of their square=(x−y)2=16
⇒x−y=±4
⇒x+y=8,x−y=4 or x+y=8,x−y=−4
⇒x+y+x−y=8+4 or x+y+x−y=8−4
⇒2x=12 or 2x=4
⇒x=6 or x=2
Put x=6 in x+y=8 we get y=8−x=8−6=2
Put x=2 in x+y=8 we get y=8−x=8−2=6
∴ the numbers are (6,2) and (2,6)
3)Let x and x+1 be the two consecutive natural numbers.
Sum of the square of two natural numbers=x2+(x+1)2=221
⇒x2+x2+2x+1−221=0
⇒2x2+2x−220=0
⇒x2+x−110=0
⇒x2+11x−10x−110=0
⇒x(x+11)−10(x+11)=0
⇒(x+11)(x−10)=0
∴x=10 since x=−11≠N
4)Let the three consecutive positive integers be x,x+1,x+2
Given:sum of squares of first integer and product of second and third=191
⇒x2+(x+1)(x+2)=191
⇒x2+x2+3x+2−191=0
⇒2x2+3x−189=0
⇒2x2+21x−18x−189=0
⇒x(2x+21)−9(2x+21)=0
⇒(2x+21)(x−9)=0
⇒x=−212,9
∴x=9 since −212∉Z
The integers are 9,10,11