1)∂u∂z|0,0,π4=2sinzcosz2√sin2x+sin2y+sin2z
=121√2=1√2=A
2)∂u∂x=(y−z)(z−x)+0−z(x−y)(y−z)
∂u∂y=−(y−z)(z−x)+(x−y)(z−x)
∂u∂z=−(x−y)(z−x)+(y−z)(x−y)
∂u∂x+∂u∂y+∂u∂z=0=B
3)∂u∂x=3x2−3yzx3+y3+z3−3xyz
∂u∂y=3y2−3xzx3+y3+z3−3xyz
∂u∂z=3z2−3xyx3+y3+z3−3xyz
2(∂u∂x+∂u∂y+∂u∂z)∣∣1−1,3=2(3(x2+y2+z2)−3(xy+yz+zx)x3+y3+z3−3xyz)=2=C
Thus, the ascending order in magnitude is B,A,C.