1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
1+x1+y2 d x+1...
Question
(1 + x) (1 + y
2
) dx + (1 + y) (1 + x
2
) dy = 0
Open in App
Solution
We
have
,
1
+
x
1
+
y
2
d
x
+
1
+
y
1
+
x
2
d
y
=
0
⇒
1
+
x
1
+
y
2
d
x
=
-
1
+
y
1
+
x
2
d
y
⇒
1
+
x
1
+
x
2
d
x
=
-
1
+
y
1
+
y
2
d
y
Integarting
both
sides
,
we
get
∫
1
+
x
1
+
x
2
d
x
=
-
∫
1
+
y
1
+
y
2
d
y
⇒
∫
1
1
+
x
2
d
x
+
∫
x
1
+
x
2
d
x
=
-
∫
1
1
+
y
2
d
y
-
∫
y
1
+
y
2
d
y
Substituting
1
+
x
2
=
t
in
the
second
integral
of
LHS
and
1
+
y
2
=
u
in
the
second
integral
of
RHS
,
we
get
2
x
d
x
=
d
t
and
2
y
d
y
=
d
u
∴
∫
1
1
+
x
2
d
x
+
1
2
∫
1
t
d
t
=
-
∫
1
1
+
y
2
d
y
-
1
2
∫
1
u
d
u
⇒
tan
-
1
x
+
1
2
log
t
=
-
tan
-
1
y
-
1
2
log
u
+
C
⇒
tan
-
1
x
+
1
2
log
1
+
x
2
=
-
tan
-
1
y
-
1
2
log
1
+
y
2
+
C
⇒
tan
-
1
x
+
tan
-
1
y
+
1
2
log
1
+
x
2
+
1
2
log
1
+
y
2
=
C
⇒
tan
-
1
x
+
tan
-
1
y
+
1
2
log
1
+
x
2
1
+
y
2
=
C
Hence
,
tan
-
1
x
+
tan
-
1
y
+
1
2
log
1
+
x
2
1
+
y
2
=
C
is
the
required
solution
.
Suggest Corrections
0
Similar questions
Q.
Solve that
x
(
1
+
y
2
)
d
x
+
y
(
1
+
x
2
)
d
y
=
0
Q.
Find the general solution of the differential equation:
(
1
+
x
)
(
1
+
y
2
)
d
x
+
(
1
+
y
)
(
1
+
x
2
)
d
y
=
0
Q.
Solve the differential equation
x
(
1
+
y
2
)
d
x
−
y
(
1
+
x
2
)
d
y
=
0
Q.
Find the solution of the differential equation
x
1
+
y
2
d
x
+
y
1
+
x
2
d
y
=
0
Q.
Find the particular solution of the differential equation
x
(
1
+
y
2
)
d
x
−
y
(
1
+
x
2
)
d
y
=
0
, given that
y
=
1
when
x
=
0
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Explore more
Integration of Trigonometric Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app