(1+x)n=p0+p1x+p2x2+p3x3+.....
Multiplying both side by x,
x(1+x)n=p0x+p1x2+p2x3+p3x4+.....
If x=11/4thenx4−1=0
or (x2−1)(x2+1)=0
∴x=1,−1,i,−iandx4=1
Also 1 + 1 + i - i = 0
Put x = 1, -1, i, -i in both sides of (1) and add
2n+0+i(1+i)n−i(1−i)n
=4(p3+p7+p11+.....)
1+i=√2eπi/4,1−i=√2e−πi/4
L.H.S. = 2n+i.2n/2[enπi/4−e−nπi/4]
=2n−i.2n/22isinnπ4
=2n−2.2n/2sinnπ4=4E
∴E=12{2n−1−2n/2sinnπ4}