1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Nature of Solutions Graphically
1 , z1, z2, z...
Question
1
,
z
1
,
z
2
,
z
3
,
.
.
.
,
z
n
−
1
are the
n
th roots of unity, then the value of
1
(
3
−
z
1
)
+
1
(
3
−
z
2
)
+
.
.
.
+
1
(
3
−
z
n
−
1
)
is equal to
A
n
3
n
−
1
3
n
−
1
−
1
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
n
3
n
−
1
3
n
−
1
+
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n
3
n
−
1
3
n
−
1
−
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
n
3
n
−
1
3
n
−
1
−
1
2
If
α
1
,
α
2
,
.
.
.
,
α
m
are the roots of polynomial equation
f
(
x
)
=
a
0
x
m
+
a
1
x
m
−
1
+
.
.
.
+
a
m
−
1
x
+
a
m
=
0
Then,
f
(
x
)
=
a
0
(
x
−
α
1
)
.
.
.
(
x
−
α
m
)
.
and
f
′
(
x
)
f
(
x
)
=
1
x
−
α
1
+
.
.
.
+
1
x
−
α
m
The equation in question is
x
n
−
1
=
0
f
(
x
)
=
x
n
−
1
=
(
x
−
1
)
(
x
−
z
1
)
.
.
.
(
x
−
z
n
−
1
)
Thus,
f
′
(
x
)
f
(
x
)
=
n
x
n
−
1
x
n
−
1
=
1
x
−
1
+
1
x
−
z
1
+
.
.
.
+
1
x
−
z
n
−
1
Substituting
x
=
3
:
1
3
−
1
+
1
3
−
z
1
+
.
.
.
+
1
3
−
z
n
−
1
=
n
3
n
−
1
3
n
−
1
Hence,
1
3
−
z
1
+
.
.
.
+
1
3
−
z
n
−
1
=
n
3
n
−
1
3
n
−
1
−
1
2
Hence, (A) is correct.
Suggest Corrections
0
Similar questions
Q.
1
,
z
1
,
z
2
,
.
.
.
z
n
−
1
are the n roots of unity, then the value of
1
3
−
z
1
+
1
3
−
z
2
+
.
.
.
1
3
−
z
n
−
1
is equal to
Q.
1
,
z
1
,
z
2
,
z
3
,
…
…
,
z
n
−
1
are the nth roots of unity, then the value of
1
3
−
z
1
+
1
3
−
z
2
+
…
…
+
1
3
−
z
n
−
1
is equal to
Q.
If
1
,
z
1
,
z
2
,
z
3
,
⋯
z
n
−
1
are
n
roots of unity then the value of
1
3
−
z
1
+
1
3
−
z
2
+
⋯
+
1
3
−
z
n
−
1
is equal to :
Q.
1
,
z
1
,
z
2
,
z
3
,
.
.
.
.
.
,
z
n
−
1
are the nth roots of unity, then the value of
1
(
3
−
z
1
)
+
1
(
3
−
z
2
)
+
.
.
.
.
.
+
1
(
3
−
z
n
−
1
)
is equal to
Q.
If
1
,
z
1
,
z
2
,
.
.
.
,
z
n
−
1
are the roots of
z
n
−
1
=
0
,
then
1
3
−
z
1
+
1
3
−
z
2
+
1
3
−
z
3
+
.
.
.
+
1
3
−
z
n
−
1
is equal to
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Nature of Solutions Graphically
MATHEMATICS
Watch in App
Explore more
Nature of Solutions Graphically
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app