wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

10.1-2sin2 xcos'x

Open in App
Solution

The given function f( x ) is sin 8 x cos 8 x 12 sin 2 x cos 2 x .

Integrate both sides,

f( x )dx = sin 8 x cos 8 x 12 sin 2 x cos 2 x dx = ( sin 4 x ) 2 ( cos 4 x ) 2 12 sin 2 x cos 2 x dx

On solving further we get,

f( x )dx = ( sin 4 x cos 4 x )( sin 4 x+ cos 4 x ) 12 sin 2 x cos 2 x dx = { ( ( sin 2 x ) 2 ( cos 2 x ) 2 ) }{ ( ( sin 2 x ) 2 + ( cos 2 x ) 2 ) } 12 sin 2 x cos 2 x dx = ( sin 2 x cos 2 x )( sin 2 x+ cos 2 x ){ ( sin 2 x+ cos 2 x ) 2 2 sin 2 x cos 2 x } 12 sin 2 x cos 2 x dx

Further simplify.

f( x )dx = ( sin 2 x cos 2 x )( 12 sin 2 x cos 2 x ) 12 sin 2 x cos 2 x dx = ( sin 2 x cos 2 x )dx = cos2xdx = sin2x 2 +c

Thus, integration of f( x )is sin2x 2 +c.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon