wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

10.sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

Open in App
Solution

Write the expression of L.H.S.

sin( n+1 )xsin( n+2 )x+cos( n+1 )xcos( n+2 )x

Simplify the above expression using identity 2sinAsinB=cos( A+B )+cos( AB ) and 2cosAcosB=cos( A+B )+cos( AB )

The expression will be

= 1 2 [ 2sin( n+1 )xsin( n+2 )x+2cos( n+2 )x ] = 1 2 [ cos{ ( n+1 )x( n+2 )x }cos{ ( n+1 )x+( n+2 )x }+cos{ ( n+1 )x+( n+2 )x } +cos{ ( n+1 )x( n+2 )x } ] = 1 2 ×2cos{ ( n+1 )x( n+2 )x } =cos( x )

Write the expression of R.H.S.

=cos( x )

Hence, sin( n+1 )xsin( n+2 )x+cos( n+1 )xcos( n+2 )x=cos( x ) is proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon