The given function is cos 4 2x ,
∫ cos 4 xdx = ∫ ( cos 2 2x ) 2 dx(1)
Also, cos 2 x=( 1+cos(2x) 2 )
From (1),
cos 4 x= ( 1+cos(2x) 2 ) 2 = 1 4 ( 1+ cos 2 4x+2cos4x ) = 1 4 [ 1+( 1+cos(8x) 2 )+2cos4x ] = 1 4 [ 3 2 + 1 2 cos(8x)+2cos4x ] (2)
From (1) and (2), we get,
∫ cos 4 xdx = ∫ 1 4 [ 3 2 + 1 2 cos(8x)+2cos4x ] dx = ∫ ( 3 8 + 1 8 cos(8x)+ 1 2 cos4x ) dx = 3x 8 + sin8x 64 + 1 8 sin(4x)+c
Thus, the integral of the function cos 4 x is 3x 8 + sin8x 64 + 1 8 sin(4x)+c.