wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

11. cos4 2x

Open in App
Solution

The given function is cos 4 2x ,

cos 4 xdx = ( cos 2 2x ) 2 dx(1)

Also, cos 2 x=( 1+cos(2x) 2 )

From (1),

cos 4 x= ( 1+cos(2x) 2 ) 2 = 1 4 ( 1+ cos 2 4x+2cos4x ) = 1 4 [ 1+( 1+cos(8x) 2 )+2cos4x ] = 1 4 [ 3 2 + 1 2 cos(8x)+2cos4x ] (2)

From (1) and (2), we get,

cos 4 xdx = 1 4 [ 3 2 + 1 2 cos(8x)+2cos4x ] dx = ( 3 8 + 1 8 cos(8x)+ 1 2 cos4x ) dx = 3x 8 + sin8x 64 + 1 8 sin(4x)+c

Thus, the integral of the function cos 4 x is 3x 8 + sin8x 64 + 1 8 sin(4x)+c.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon