The given equation is y= sin −1 ( 1− x 2 1+ x 2 )
y= sin −1 ( 1− x 2 1+ x 2 )(1)
Let x=tanθ θ= tan −1 x
Hence, y= sin −1 ( 1− tan 2 θ 1+ tan 2 θ ) (2)
Also, cos( 2θ )= 1− tan 2 θ 1+ tan 2 θ (3)
From (2) and (3),
y= sin −1 ( 1− tan 2 θ 1+ tan 2 θ ) = sin −1 ( cos( 2θ ) ) = sin −1 ( sin( π 2 −2θ ) ) = π 2 −2θ
So, y= π 2 −2 tan −1 x
Differentiate both sides,
dy dx =0− 2 1+ x 2
Thus, the derivative of sin −1 ( 1− x 2 1+ x 2 ) is − 2 1+ x 2 .