wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

12. (ax +b)"

Open in App
Solution

Consider the function,

f( x )= ( ax+b ) n

According to the first principle, the derivative of the function is,

f ( x )= lim h0 f( x+h )f( x ) h

Apply the above formula in the given function,

f ( x )= lim h0 [ ( a( x+h )+b ) n ( ax+b ) n ] h = lim h0 [ ( ax+ah+b ) n ( ax+b ) n ] h = lim h0 ( ax+b ) n [ ( 1+ ah ax+b ) n 1 ] h = ( ax+b ) n lim h0 [ ( 1+ ah ax+b ) n 1 ] h

The binomial expansion for n number of terms is,

( 1+x ) n =1+nx+ n( n1 ) 2! x 2 +

Use the expansion in the function of derivative,

f ( x )= ( ax+b ) n lim h0 1 h [ { 1+n( ah ax+b )+ n( n1 ) 2! ( ah ax+b ) 2 + }1 ]

Expand the function to its highest degree,

f ( x )= ( ax+b ) n lim h0 1 h [ n( ah ax+b )+ n( n1 ) a 2 h 2 2! ( ax+b ) 2 + ] = ( ax+b ) n lim h0 [ n( a ax+b )+ n( n1 ) a 2 h 2! ( ax+b ) 2 + ]

Apply the limits,

f ( x )= ( ax+b ) n [ na ax+b +0 ] =na ( ax+b ) n ( ax+b ) =na ( ax+b ) n1

Thus, the derivative of ( ax+b ) n is na ( ax+b ) n1 .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon