1282 - 1272 =
260
250
255
245
We know that (n+1)2 - n2 = 2n+1
1282 - 1272 = 2 x 127 + 1 = 254 + 1 = 255
The square root of (2722−1282) is :
Subtract the sum of −1250 and 1138 from the sum of 1136 and −1272.
Find the values of (i) (82)2−(18)2 (ii) (128)2−(72)2 (iii) 197×203 (iv) 198×198−102×10296 (v) (14.7×15.3) (vi) (8.63)2−(1.37)2