L.H.S = sin2x+2sin4x+sin6x
Use trigonometric identity
sinA+sinB=2sin( A+B 2 )⋅cos( A−B 2 )
Simplifying the L.H.S,
sin2x+2sin4x+sin6x =[ 2sin( 2x+6x 2 )⋅cos( 2x−6x 2 ) ]+2sin4x =2sin4x⋅cos( −2x )+2sin4x =2sin4x⋅cos2x+2sin4x =2sin4x( cos2x+1 )
=2sin4x⋅( 2 cos 2 x−1+1 ) [∵cos2θ = 2cos 2 θ - 1] =2sin4x⋅( 2 cos 2 x ) =4 cos 2 x⋅sin4x
L.H.S. = R.H.S.
Hence, proved.
∫π20sin4xsin4x+cos4x dx=
Period of the function 2 sin4x + 3 cos4x is