The integral of the function is given as,
∫ 1 x ( logx ) m dx (1)
Consider, logx=t.
Differentiate with respect to x.
logx=t 1 x dx=dt
Substitute 1 x dx=dt in equation (1) and then integrate.
∫ 1 x ( logx ) m dx = ∫ dt t m = ∫ t −m = t −m+1 1−m +C
Substitute logx=t in the above equation.
∫ 1 x ( logx ) m dx = t −m+1 1−m +C = ( logx ) 1−m 1−m +C