The correct option is B 13.214+1
(1+x)15=1+x15C1+x215C2+...+x1515C15
Dividing both the sides with x.
(1+x)15x=1x+15C1+x15C2+...+x1415C15
Differentiating both the sides with respect to x
15x(1+x)14−(1+x)15x2=−1x2+15C2+...+14x1315C15 ...(i)
Substituting x=1 in equation (i), we get
15(2)14−(2)15=−1+15C2+...+1415C15
214(15−2)+1=15C2+...+1415C15
214(13)+1=15C2+...+1415C15
Hence answer is Option B