CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

15. cosec x cot x

Open in App
Solution

Consider the function,

f( x )=cosecxcotx

According to the first principle, the derivative of the function is,

f ( x )= lim h0 f( x+h )f( x ) h

The given function can be written as,

f( x )= f 1 ( x ) f 2 ( x )

The Leibnitz Product rule of derivative to find the derivative of the function is,

f ( x )= f 1 ( x ) f 2 ( x )+ f 2 ( x ) f 1 ( x ) (1)

On solving the value of f 2 ( x ), we get,

f 2 ( x )= lim h0 cot( x+h )cotx h = lim h0 1 h [ cos( x+h ) sin( x+h ) cosx sinx ] = lim h0 1 h [ sinxcos( x+h )cosxsin( x+h ) sinxsin( x+h ) ]

From the trigonometric identity, we know that,

sin( AB )=sinAcosBcosAsinB

The derivative of the function is,

f 2 ( x )= lim h0 1 h sin( xxh ) sinxsin( x+h ) = lim h0 1 h sin( h ) sinxsin( x+h ) = lim h0 1 h sinh sinxsin( x+h ) = lim h0 sinh h lim h0 1 sinxsin( x+h )

Apply the limits,

f 2 ( x )=( 1 ) 1 sinxsin( x+0 ) = 1 sinxsinx =cose c 2 x

Now,

f 1 ( x )= lim h0 [ cosec( x+h )cosecx ] h = lim h0 1 h [ 1 sin( x+h ) 1 sinx ] = lim h0 1 h [ sinxsin( x+h ) sinxsin( x+h ) ]

From the trigonometric identity, we know that,

sinCsinD=2cos C+D 2 sin CD 2

The derivative of the function is,

f 1 ( x )= lim h0 1 h [ 2cos( x+x+h 2 )sin( xxh 2 ) sinxsin( x+h ) ] = lim h0 1 h [ 2cos( 2x+h 2 )sin( h 2 ) sinxsin( x+h ) ] = lim h0 1 h 2 [ cos( 2x+h 2 ) sin( x+h )sinx sin( h 2 ) ]

Simplify the function by applying limits,

f 1 ( x )= lim h0 cos( 2x+h 2 ) sin( x+h )sinx lim h0 sin( h 2 ) h 2 = cos( 2x 2 ) sinxsin( x+0 ) ( 1 ) = cosx sinx ( cosecx ) =cosecxcotx

Put the value of f 1 ( x ) and f 2 ( x ) in equation (1),

f ( x )=cosecx( cosec 2 x )+cotx( cosecxcotx ) = cosec 3 xcosecx cot 2 x

Thus, the derivative of cosecxcotx is cosec 3 xcosecx cot 2 x.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon