The integral is,
y= ∫ ( 2 x 2 −3sinx+5 x ) dx
Here, y is the solution of integral.
Use the formulas of ∫ x n dx = x n+1 n+1 +Aand ∫ sinx dx=−cosx+E, where A and E are constants.
y= ∫ ( 2 x 2 −3sinx+5 x ) dx =2 ∫ x 2 dx−3 ∫ sinxdx +5 ∫ x 1 2 dx =2 x 2+1 2+1 −3( −cosx )+5 x 1 2 +1 1 2 +1 +D = 2x 3 3 +3cosx+ 10 x 3 2 3 +D
Where, D is constant.
Thus, the solution of integral is 2x 3 3 +3cosx+ 10 x 3 2 3 +D.