1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiability
∫ 1 eexx 1+x ...
Question
∫
1
e
e
x
x
1
+
x
log
x
d
x
Open in App
Solution
Let
I
=
∫
1
e
e
x
x
1
+
x
log
x
d
x
.
Then
,
I
=
∫
1
e
e
x
x
+
e
x
log
x
d
x
⇒
I
=
∫
1
e
e
x
x
d
x
+
∫
1
e
e
x
log
x
d
x
Integrating
first
term
by
parts
⇒
I
=
log
x
e
x
1
e
-
∫
1
e
e
x
log
x
d
x
+
∫
1
e
e
x
log
x
d
x
⇒
I
=
log
e
e
e
-
0
⇒
I
=
e
e
Suggest Corrections
0
Similar questions
Q.
∫
x
l
o
g
x
d
x
=
?
Q.
Solve
∫
x
l
o
g
x
d
x
Q.
∫
1
x
+
x
l
o
g
x
d
x
.
Q.
Solve:
∫
1
x
log
x
d
x
Q.
∫
t
1
e
x
x
(
1
+
x
l
o
g
x
)
d
x
=