Let the integral be f( x ),
f( x )= ∫ a b xdx
The integration of the function is,
∫ a b f( x )dx =( b−a ) lim n→∞ 1 n ( f( a )+f( a+h )+f( a+2h )+...+f( a+( n−1 )h ) )
Substitute the values,
a=a,b=b h= b−a n f( x )=x
And,
f( a+h )=a+h f( a+2h )=a+2h f( a+( n−1 )h )=a+( n−1 )h
Now, the integral becomes,
∫ a b xdx =( b−a ) lim n→∞ 1 n ( f( a )+f( a+h )+f( a+2h )+...+f( a+( n−1 )h ) ) =( b−a ) lim n→∞ 1 n ( ( a )+( a+h )+( a+2h )+...+( a+( n−1 )h ) ) =( b−a ) lim n→∞ 1 n ( ( na )+h( 1+2+...+( n−1 ) ) ) (1)
Simplify the above series,
1+2+3+...+n= n( n+1 ) 2 1+2+3+...+n−1= ( n−1 )( n−1+1 ) 2 = n( n−1 ) 2
Now, substitute the value of series in equation (1).
∫ a b xdx =( b−a ) lim n→∞ 1 n ( ( na )+ ( b−a ) n ( n( n−1 ) 2 ) ) [ ∵h= b−a n ] =( b−a ) lim n→∞ ( ( a )+ ( b−a ) n ( ( n−1 ) 2 ) ) =( b−a ) lim n→∞ ( ( a )+ ( b−a ) 2 ( n n − 1 n ) ) =( b−a )( a+ b−a 2 )
Further simplify,
∫ a b xdx = ( b−a )( b+a ) 2 = b 2 − a 2 2
Thus, the definite integral function f( x ) is b 2 − a 2 2 .