wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1x dx

Open in App
Solution

Let the integral be f( x ),

f( x )= a b xdx

The integration of the function is,

a b f( x )dx =( ba ) lim n 1 n ( f( a )+f( a+h )+f( a+2h )+...+f( a+( n1 )h ) )

Substitute the values,

a=a,b=b h= ba n f( x )=x

And,

f( a+h )=a+h f( a+2h )=a+2h f( a+( n1 )h )=a+( n1 )h

Now, the integral becomes,

a b xdx =( ba ) lim n 1 n ( f( a )+f( a+h )+f( a+2h )+...+f( a+( n1 )h ) ) =( ba ) lim n 1 n ( ( a )+( a+h )+( a+2h )+...+( a+( n1 )h ) ) =( ba ) lim n 1 n ( ( na )+h( 1+2+...+( n1 ) ) ) (1)

Simplify the above series,

1+2+3+...+n= n( n+1 ) 2 1+2+3+...+n1= ( n1 )( n1+1 ) 2 = n( n1 ) 2

Now, substitute the value of series in equation (1).

a b xdx =( ba ) lim n 1 n ( ( na )+ ( ba ) n ( n( n1 ) 2 ) ) [ h= ba n ] =( ba ) lim n ( ( a )+ ( ba ) n ( ( n1 ) 2 ) ) =( ba ) lim n ( ( a )+ ( ba ) 2 ( n n 1 n ) ) =( ba )( a+ ba 2 )

Further simplify,

a b xdx = ( ba )( b+a ) 2 = b 2 a 2 2

Thus, the definite integral function f( x ) is b 2 a 2 2 .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon