1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Inequalities
∫ 1 x 2+1 x 2...
Question
∫
1
x
2
+
1
x
2
+
2
d
x
Open in App
Solution
We
have
,
I
=
∫
d
x
x
2
+
1
x
2
+
2
Putting
x
2
=
t
Then
,
1
x
2
+
1
x
2
+
2
=
1
t
+
1
t
+
2
Let
1
t
+
1
t
+
2
=
A
t
+
1
+
B
t
+
2
⇒
1
t
+
1
t
+
2
=
A
t
+
2
+
B
t
+
1
t
+
1
t
+
2
⇒
1
=
A
t
+
2
+
B
t
+
1
Putting
t
+
2
=
0
⇒
t
=
-
2
∴
1
=
A
×
0
+
B
-
1
⇒
B
=
-
1
Putting
t
+
1
=
0
⇒
t
=
-
1
∴
1
=
A
-
1
+
2
+
B
×
0
⇒
A
=
1
∴
1
t
+
1
t
+
2
=
1
t
+
1
-
1
t
+
2
⇒
1
x
2
+
1
x
2
+
2
=
1
x
2
+
1
-
1
x
2
+
2
2
∴
I
=
∫
d
x
x
2
+
1
2
-
∫
d
x
x
2
+
2
2
=
tan
-
1
x
-
1
2
tan
-
1
x
2
+
C
Suggest Corrections
0
Similar questions
Q.
Solve:
∫
5
x
(
x
+
1
)
(
x
2
+
2
)
d
x
Q.
∫
1
x
+
1
x
2
+
2
x
+
2
d
x
Q.
∫
1
(
x
2
−
1
)
(
x
2
+
2
)
d
x
=
Q.
Solve:
∫
2
x
(
x
2
+
1
)
(
x
2
+
2
)
d
x
Q.
∫
2
x
(
x
2
+
1
)
(
x
2
+
2
)
dx
is
equal
to