21!+43!+65!+..........∞equals
e
-e
1e
none of these
Explanation for correct answer:
Let the given sequence, S=21!+43!+65!+..........∞
⇒S∞=∑n=1∞2n2n-1!⇒S∞=∑n=1∞2n-1+12n-12n-2!⇒S∞=∑n=1∞12n-2!+12n-1!⇒S∞=10!+12!+14!+....+11!+13!+15!+......⇒S∞=10!+11!+12!+13!+.......⇒S∞=e[∵e=1+11!+12!+........]
Therefore, correct answer is option (a).
The sum of the series 23!+45!+67!+... to ∞ = ae. Find (a+3)2.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.