1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiation of a Function
2 cos xdydx +...
Question
2 cos
x
d
y
d
x
+
4
y
sin x = sin 2x, given that y = 0 when x =
π
3
.
Open in App
Solution
We have,
2
cos
x
d
y
d
x
+
4
y
sin
x
=
sin
2
x
⇒
d
y
d
x
+
4
y
sin
x
2
cos
x
=
2
sin
x
cos
x
2
cos
x
⇒
d
y
d
x
+
2
y
tan
x
=
sin
x
Comparing
with
d
y
d
x
+
P
y
=
Q
,
we
get
P
=
2
tan
x
Q
=
sin
x
Now
,
I
.
F
.
=
e
2
∫
tan
x
d
x
=
e
2
log
s
e
c
x
=
sec
2
x
So
,
the
solution
is
given
by
y
×
I
.
F
.
=
∫
Q
×
I
.
F
.
d
x
+
C
⇒
y
sec
2
x
=
∫
sin
x
sec
2
x
d
x
+
C
⇒
y
sec
2
x
=
∫
tan
x
sec
x
d
x
+
C
⇒
y
sec
2
x
=
sec
x
+
C
⇒
y
=
cos
x
+
C
cos
2
x
.
.
.
.
.
1
Now
,
When
x
=
π
3
,
y
=
0
∴
0
=
cos
π
3
+
C
cos
2
π
3
⇒
0
=
1
2
+
C
1
4
⇒
C
=
-
2
Putting
the
value
of
C
in
1
,
we
get
y
=
cos
x
-
2
cos
2
x
Suggest Corrections
0
Similar questions
Q.
Show that the areas under the curves y = sin x and y = sin 2x between x = 0 and x =
π
3
are in the ratio 2 : 3.