The correct option is C 3
Consider ∑cot−1(n2+n+1) where n=1,2,3,4
Since tan−1x=cot−11x for x>0, we get
∑tan−111+n(n+1)
=∑tan−1(n+1)−n1+n(n+1)
=∑(tan−1(n+1)−tan−1(n))
Tn=tan−1(n+1)−tan−1(n)T1=tan−1(2)−tan−1(1)T2=tan−1(3)−tan−1(2)T3=tan−1(4)−tan−1(3)T4=tan−1(5)−tan−1(4)
∴S=T1+T2+T3+T4
=tan−1(5)−tan−1(1)
=tan−15−11+5=tan−123
∴2cot(cot−132)=2⋅32=3