wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

2dydxysecx=y3tanx.

Open in App
Solution

2dydxysecx=y3tanx.

2dydx=y3tanx+ysecx

2dydx=y(y2tanx+secx)

2dyy=(y2tanx+secx)dx

2logy=y2sec2x+ln|secx+tanx|+C

2y2logy=sec2x+ln|secx+tanx|

2y2logy=logesec2x+ln|secx+tanx|

2y2=1+(π+x)cot(π4+x2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon