2. (i)Which term of the A.P. 3,8,13,...is 248?
(ii) Which term of the A.P. 84,80,76,... is 0?
(iii) Which term of the A.P. 4,9,14,... is 254?
(iv) Which term of the A.P. 21,42,63,84,...is 420?
(v) Which term of the A.P. 121,117,113,... is its first negative term?
1.
a=3,d=8−3=5,an=248,n=?an=a+(n−1)d248=3+(n−1)×5248−3=(n−1)×5245=(n−1)×5245÷5=n−149=n−1n=49+1n=502−We know that Tn=a+(n−1)d=84+(n−1)×(−4)=0=84−4n+4=0=88−4n=0n=88/4=223−Here the first term=a=4andthe common difference=d=9−4=5Let nth term of the given A.P. be 254, then,
Hence, the 51 th term of the given A.P. is 254
4-
a=21d=21an=420n=?
=a+(n-1)d
420=21+(n-1)21
(n-1) x 21=399
n-1=399/21
n-1=19
n=19+1=20
ans..therefore the 20th term of the AP is 420
5-
121,117,113.......
a=121. d=-4
For a(n) be negative
a(n)<0
a+(n-1)d <0
121+(n-1) x (4)<0
For ans be negative
(n-1)(-4)>121
4n >(125)
n >125/4
n >31.25
n=32
Therefore the 31st term is the negative term
Verification
a(n)=a+(n-1)d
a(n)=121+(32-1)-4
a(n)=121+31 x -4
a(n)=121-124
a (n)=-3