The correct option is A 0
We know that sin2θ+cos2θ=1 and
a3+b3=(a+b)3−3ab(a+b),
a2+b2=(a+b)2−2ab,
∴L.H.S.=2{(sin2A+cos2A)3−3sin2Acos2A(sin2A+cos2A)}
−3{(sin2A+cos2A)−sin2Acos2A}+1
=2−6sin2Acos2A−3+6sin2Acos2A+1
=3−3=0.
Another form :
Ans. (b). By part (a).
L.H.S.=3[cos4α+sin4α]−2[cos6α+sin6α]