2sin2β+4cosα+βsinαsinβ+cos2α+β=
sin2α
cos2β
cos2α
sin2β
Explanation for correct option:
Step-1: Apply formula, cosα+β=cosαcosβ-sinαsinβ
Given, 2sin2β+4cosα+βsinαsinβ+cos2α+β
=2sin2β+4cosαcosβ-sinαsinβsinαsinβ+cos2αcos2β-sin2αsin2β=2sin2β+4cosαcosβsinαsinβ-sin2αsin2β+cos2αcos2β-sin2αsin2β=2sin2β+sin2αsin2β-4sin2αsin2β+cos2αcos2β-sin2αsin2β[∵sin2θ=2sinθcosθ]=2sin2β-4sin2αsin2β+cos2αcos2β
Step-2: Apply formula, cos2x=1-2sin2x
L.H.S=1-cos2β-2sin2α2sin2β+cos2αcos2β=1-cos2β-1-cos2α1-cos2β+cos2αcos2β=1-cos2β-1+cos2β+cos2α-cos2αcos2β+cos2αcos2β=cos2α
Therefore, correct answer is option C