The given function is sin3xcos4x
∫ sin3xcos4xdx (1)
Also, sinAcosB= 1 2 { sin(A+B)+sin( A−B ) }(2)
Compare (1) and (2),
A=3 and B=4
Use (2) to further solve the equations,
∫ sin3xcos4xdx = ∫ sin(3x+4x)+sin(3x−4x) dx = 1 2 ∫ { sin(7x)+sin(−x) }dx = 1 2 ∫ sin(7x)dx+ 1 2 ∫ sin(x) dx =− 1 14 cos(7x)+ 1 2 cos(x)+c
Thus, the integral of the function sin3xcos4x is − 1 14 cos(7x)+ 1 2 cos(x)+c.