2sin-135+cos-12425=
π2
2π3
5π3
Noneofthese
Explanation for the correct option:
Step 1. Solve the given expression:
2sin-135+cos-12425
=sin-12×35×1-352+cos-12425 ∵2sin-1x=sin-1(2x1-x2)
=sin-12425+cos-12425
=cos-11-24252+cos-12425 ∵sin-1x=cos-1(1-x2)
=cos-1725+cos-12425
Step 2. Apply formula cos-1x-cos-1y=xy+1-x2×1-y2
=cos-1725×2425+1-7252×1-24252
=cos-1725×2425–1–49625×[1–576625
=cos-1168625–576625×49625
=cos-1168625–2425×725
=cos-1(0)
=cos-1cosπ2=π2 ∵cos-1[x]∈[-1,1]
Hence, Option ‘A’ is Correct.
Using the given pattern, find the missing numbers.12+22+22=3222+32+62=7232+42+122=13242+52+...2=21252+...2+302=31262+72+....2=....2.
Using the given pattern, find the missing numbers.
12 + 22 + 22 = 32
22 + 32 + 62 = 72
32 + 42 + 122 = 132
42 + 52 + _ 2 = 212
52 + _ 2 + 302 = 312
62 + 72 + _ 2 = __2