No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos−1x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan−1x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cot−1x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Btan−1x Let I=2tan−1(cosectan−1x−tancot−1x)=2tan−1(coseccosec−1(√1+x2x)−tantan−1(1x))=2tan−1(√1+x2x−1x)=2tan−1(√1+x2−1x) Substituting x=tanθ, we get I=2tan−1secθ−1tanθ=2tan−1(tanθ2)=θ=tan−1x