wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

2tan1(aba+btanx2)=

A
cos1(b+a cosxa+b cosx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cos1(b+acosxabcosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos1(bacosxa+bcosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos1(bacosxabcosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A cos1(b+a cosxa+b cosx)
Given

2tan1(aba+btanx2)

Let θ=tan1(aba+btanx2)(1)

tanθ=(aba+btanx2)

tan2θ=(aba+btanx2)2

tan2θ=aba+btan2x2(2)


cos2θ=1tan2θ1+tan2θ(3)

From (2)

cos2θ=1(aba+btan2x2)1+(aba+btan2x2)

cos2θ=(a+b)((ab)tan2x2)(a+b)+((ab)tan2x2)

cos2θ=a+batan2x2+btan2x2a+b+atan2x2btan2x2

cos2θ=a(1tan2x2)+b(1+tan2x2)a(1+tan2x2)+b(1tan2x2)

Dividing Numerator and Denominator by (1+tan2x2)

cos2θ=a⎜ ⎜1tan2x21+tan2x2⎟ ⎟+ba+b⎜ ⎜1tan2x21+tan2x2⎟ ⎟

cos2θ=acosx+ba+bcosx

(cos2θ=1tan2θ1+tan2θ)

2θ=cos1(acosx+ba+bcosx)

From (1)

2tan1(aba+btanx2)=cos1(acosx+ba+bcosx)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon