The correct option is
A cos−1(b+a cosxa+b cosx)Given
2tan−1(√a−ba+btanx2)
Let θ=tan−1(√a−ba+btanx2)⋯(1)
⟹tanθ=(√a−ba+btanx2)
⟹tan2θ=(√a−ba+btanx2)2
⟹tan2θ=a−ba+btan2x2⋯(2)
cos2θ=1−tan2θ1+tan2θ⋯(3)
From (2)
⟹cos2θ=1−(a−ba+btan2x2)1+(a−ba+btan2x2)
⟹cos2θ=(a+b)−((a−b)tan2x2)(a+b)+((a−b)tan2x2)
⟹cos2θ=a+b−atan2x2+btan2x2a+b+atan2x2−btan2x2
⟹cos2θ=a(1−tan2x2)+b(1+tan2x2)a(1+tan2x2)+b(1−tan2x2)
Dividing Numerator and Denominator by (1+tan2x2)
⟹cos2θ=a⎛⎜
⎜⎝1−tan2x21+tan2x2⎞⎟
⎟⎠+ba+b⎛⎜
⎜⎝1−tan2x21+tan2x2⎞⎟
⎟⎠
⟹cos2θ=acosx+ba+bcosx
(cos2θ=1−tan2θ1+tan2θ)
⟹2θ=cos−1(acosx+ba+bcosx)
From (1)
⟹2tan−1(√a−ba+btanx2)=cos−1(acosx+ba+bcosx)