Let y=vx
⇒dydx=v+xdvdx
Substituting the above in 2xydydx=x2+y2
⇒2x(vx)(v+xdvdx)=x2+(vx)2
⇒2vx2(v+xdvdx)=x2(1+v2)
⇒2v(v+xdvdx)=(1+v2)
⇒2v2+2vxdvdx−1−v2=0
⇒v2−1=−2vxdvdx
⇒2vdv1−v2=dxx on re-arranging
⇒∫2vdv1−v2=∫dxx
Let t=1−v2⇒dt=−2vdv
⇒∫−dtt=∫dxx
⇒−logt=logx+c where c is the constant of integration.
⇒−log(1−v2)−logx=c where t=1−v2
⇒−log(1−(yx)2)−logx=c where v=yx
⇒log(x2−y2x2)+logx=−c using the identity loga+logb=logab
⇒[x(x2−y2x2)]=10−c=k where k is the constant of integration
⇒x2−y2x=k
⇒x2−y2=kx is the required solution.