The correct option is C 12,8
Let the parts be x,y
So, x+y=20and (x3)(y2)=maximum
Hence,f(x)=(x3)(20−x)2 should be maximum
So, f′(x)=3x2(20−x)2+x3(−2(20−x))
⇒f′(x)=x2(20−x)(60−5x)=0
⇒x=0,12,20
f′′(x)=2x(20−x)(60−5x)−x2(60−5x)−5x2(20−x)
⇒f′′(12)<0
∴x=12,y=8
{∵x=0,20 will make the product 0}