The integral is given as,
I= ∫ dx ( e x −1 )
Assume e x =t
Differentiate with respect to t.
e x dx=dt dx= dt e x dx= dt t
Substitute the value in the given integral.
I= ∫ dt t( t−1 )
Use rule of partial fraction.
1 t( t−1 ) = A t + B ( t−1 ) 1=A( t−1 )+Bt
Substitute t=1then,
B=1
Substitute t=0then,
A=−1
Substitute the values,
I= ∫ dt t( t−1 ) I= ∫ −dt t + ∫ dt ( t−1 ) I=−log| t |+log| t−1 |+C
By substituting value of t, we get
I=−log| e x |+log| e x −1 |+C I=log| e x −1 e x |+C