23×(−99)=a×(−100+b)=23×c+23×1.
Find the values of a, b and c.
a = 23
b = 1
c = -100
Consider 23×(−99).
23×(−99)=23×(−100+1)
Also, 23×(−99)=a×(−100+b) (given)
On comparing, we get a = 23 and b = 1
a×(−100+b)=23×c+23×1 (given)
Consider a×(−100+b).
a×(−100+b)
=23×(−100+1)
(since a = 23 and b = 1)
=23×(−100)+23×1
(using distributivity property)
⇒23×(−100)+23×1=23×c+23×1
On comparing, we get c = -100.
Hence, we have a = 23, b = 1 and c = -100.