The given integration is,
∫ e x secx( 1+tanx )dx = ∫ e x ( secx+secxtanx )dx
The given function is in the form of,
∫ e x ( f( x )+ f ′ ( x ) )dx = e x f( x )+C
Assume, f( x )=secx and f ′ ( x )=secxtanx.
The integration of the given function is,
∫ e x ( secx+secxtanx )dx = e x secx+C
Therefore, option (B) is correct.