The given expression
27a3−(3a−b)3 can be solved as shown below:
27a3−(3a−b)3=(3a)3−(3a−b)3=[3a−(3a−b)][(3a)2+(3a−b)2+3a(3a−b)](∵x3−y3=(x−y)(x2+y2+xy)=(3a−3a+b)[9a2+[(3a)2+b2−(2×3a×b)]+9a2−3ab](∵(x−y)2=x2+y2−2xy)=b(9a2+9a2+b2−6ab+9a2−3ab)=b(27a2+b2−9ab)
Hence, 27a3−(3a−b)3=b(27a2+b2−9ab)