The given equations are:
2(ax − by) + (a + 4b) = 0
⇒ 2ax − 2by + a + 4b = 0 ...............(i)
and 2(bx + ay) + b − 4a = 0
⇒ 2bx + 2ay + b − 4a = 0 ...................(ii)
On multiplying (i) by a and (ii) by b, we get:
2a2x − 2aby + a2 + 4ab = 0 ................(iii)
2b2x + 2aby + b2 − 4ab = 0 ....................(iv)
On adding (iii) and (iv), we get:
2(a2 + b2)x = −(a2 + b2)
On substituting in (i), we get:
⇒ −2by + 4b = 0
⇒ 2by = 4b
⇒ y =
Hence, the required solution is and y = 2.