Let
→b=2i−4j+k
→a=2i+3j+k
Let
→a=→a1+→a2
→a1=vector parallel to →b
→a2=vector perpendicular to →b
since→a1is parallel to →b
→a1=λ(2i−4j+k)
→a1=2λi−4λj+λk
also
→a2=→a+→a1
→a2=(2i+3j+k)−(2λi−4λj+λk)
=i(2−2λ)+j(3+4λ)+k(1−λ)
since→a2and→bareperpendicular
→a2⋅→b=0
[i(2−2λ)+j(3+4λ)+k(1−λ)]⋅(2i−4j+k)=0
⇒2(2−2λ)+(−4)(3+4λ)+(1−λ)(1)=0
⇒4−4λ−12−16λ+1−λ=0
⇒−7=21λ
λ=−13
→a1=−13(2i−4j+k)
→a2=i(2−2(−13))+j(3+4(−13))+k(1−(−13))
=13(8i+5j+4k)
Hence
13(8i+5j+4k)−13(2i−4j+k)
comparingwithp(8i+5j+4k)−q(2i−4j+k)
p=13,q=−13
Hence
p+q=13−13=0