1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
2 x-3 z+w=1x-...
Question
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
Open in App
Solution
D
=
2
0
-
3
1
1
-
1
0
2
0
-
3
1
1
1
1
1
0
2
-
1
0
2
-
3
1
1
1
1
0
-
0
-
3
1
-
1
2
0
-
3
1
1
1
0
-
1
1
-
1
0
0
-
3
1
1
1
1
=
2
-
1
0
-
1
-
0
0
-
1
+
2
-
3
-
1
-
3
1
0
-
1
+
1
0
-
1
+
2
0
+
3
-
1
1
-
3
-
1
+
1
0
-
1
+
0
0
+
3
=
-
21
D
1
=
1
0
-
3
1
1
-
1
0
2
1
-
3
1
1
1
1
1
0
1
-
1
0
2
-
3
1
1
1
1
0
-
0
-
3
1
-
1
2
1
-
3
1
1
1
0
-
1
1
-
1
0
1
-
3
1
1
1
1
=
1
-
1
0
-
1
-
0
0
-
1
+
2
-
3
-
1
-
3
1
0
-
1
+
1
0
-
1
+
2
1
+
3
-
1
1
-
3
-
1
+
1
0
-
1
+
2
1
+
3
=
-
21
D
2
=
2
1
-
3
1
1
1
0
2
0
1
1
1
1
1
1
0
=
2
1
0
2
1
1
1
1
1
0
-
1
1
0
2
0
1
1
1
1
0
+
(
-
3
)
1
1
2
0
1
1
1
1
0
-
1
1
1
0
0
1
1
1
1
1
2
1
0
-
1
+
2
1
-
1
-
1
1
0
-
1
+
2
0
-
1
-
3
1
0
-
1
-
1
0
-
1
+
2
0
-
1
-
1
1
1
-
1
-
1
0
-
1
=
6
D
3
=
2
0
1
1
1
-
1
1
2
0
-
3
1
1
1
1
1
0
=
2
-
1
1
2
-
3
1
1
1
1
0
-
0
+
1
1
-
1
2
0
-
3
1
1
1
0
-
1
1
-
1
1
0
-
3
1
1
1
1
=
2
-
1
0
-
1
-
1
0
-
1
+
2
-
3
-
1
+
1
1
0
-
1
+
1
0
-
1
+
2
0
+
3
-
1
1
-
3
-
1
+
1
0
-
1
+
1
0
+
3
=
-
6
D
4
=
2
0
-
3
1
1
-
1
0
1
0
-
3
1
1
1
1
1
1
=
2
-
1
0
1
-
3
1
1
1
1
1
-
0
-
3
1
-
1
1
0
-
3
1
1
1
1
-
1
1
-
1
0
0
-
3
1
1
1
1
=
2
-
1
1
-
1
+
1
-
3
-
1
-
3
1
-
3
-
1
+
1
0
-
1
+
1
0
+
3
-
1
1
-
3
-
1
+
1
0
-
1
=
3
So
,
by
Cramer
'
s
rule
,
we
obtain
x
=
D
1
D
=
21
21
=
1
y
=
D
2
D
=
6
-
21
=
-
2
7
z
=
D
3
D
=
-
6
-
21
=
2
7
w
=
D
4
D
=
3
-
21
=
-
1
7
Hence
,
x
=
1
,
y
=
-
2
7
,
z
=
2
7
,
w
=
-
1
7
Suggest Corrections
0
Similar questions
Q.
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
Q.
Find
x
,
y
,
z
,
w
if
[
x
+
y
x
−
y
y
+
z
+
w
2
w
−
z
]
=
[
2
−
1
9
5
]
Q.
H
2
(
g
)
+
V
2
O
5
(
s
)
→
V
2
O
3
(
s
)
+
H
2
O
(
l
)
Let the coefficients for the given reaction be as follows:
w
H
2
(
g
)
+
x
V
2
O
5
(
s
)
→
y
V
2
O
3
(
s
)
+
z
H
2
O
(
l
)
What will be the values of w, x, y and z so that the reaction is balanced?
Q.
If
3
[
x
y
z
w
]
=
[
x
6
−
1
2
w
]
+
[
4
x
+
y
z
+
w
3
]
, find the value of
x
,
y
,
z
&
w
.
Q.
Maximize Z = 2x + 3y
Subject to
x
+
y
≥
1
10
x
+
y
≥
5
x
+
10
y
≥
1
x
,
y
≥
0