Factorise 2x2+y2+8z2−2√2xy+4√2yz−8xz
2x2+y2+8z2−2√2xy+4√2yz−8xz
=(√2x)2+(y)2+(2√2z)2−2(√2x)(y)+2(2√2z)(y)−2(√2x)(2√2z)
Using a2+b2+c2=2ab+2bc+2ac=(a+b+c)2, we get,
a=√2x, b=y and c=2√2z
=(√2x+y+2√2z)2
Factorise:
(i)
(ii)