[(-3) + 6] ÷ [(-3) + 3] =
0
2
3
Not defined
Given, [(-3) + 6] ÷ [(-3) + 3] = 3 ÷ 0 ∵ Any number divided by 0 is not defined ⇒ 3 ÷ 0 = Not defined.
Given a = 6 + √3 ⇒ (1/a) = 1 / (6 + √3) Multiply and divide by (6 − √3) ⇒ (1/a) = (6− √3) / [(6 + √3)(6 − √3)] ⇒ (1/a) = (6 − √3) / [36 − 3] ⇒ (1/a) = (6− √3)/33 ∴ a - (1/a) = (6 + √3) -(6 − √3)/33 = [33(6 + √3) - (6 - √3)]/33 = [32*6 + 34*√3]/33 = [192 + 34√3]/33 Answer : [192 + 34√3]/33
Why does 1/a come above
Question 6
Which of the following expressions show that rational numbers are associative under multiplication. (a) 23×(−67×35)=(23×−67)×35 (b) 23×(−67×35)=23×(35×−67) (c) 23×(−67×35)=(35×23)×−67 (d) (23×−67)×35=(−67×23)×35