We have, 3+7+14+24+37+... The sequence of the differences between the successive terms of this series is 4,7,10,13+... clearly, it is an A.P. with common difference 3. Let Tnbe the nth term and Sn denote the sum of n terms of the given series. Then, Sn = 3 + 7 + 14 + 24 + 37 +...T_{n-1}+...(i)\\ Also, Sn = 3 + 7 + 14 + 24 + 37 +...T_{n-1}+...(ii)\\ Subtracting (ii) from (i), we get 0=3+[4+7+10...Tn−Tn−1]−Tn ⇒Tn=3+[4+7+10...(Tn−Tn−1)]⇒Tn=3+(n+1)2[2×4+(n−1−1)×3]=3+(n−1)2[8+(n−2)3]=3+(n−1)2[8+3n−6]=3+(n−1)2[2+3n]=6+(n−1)(2+3n)2 =6+2n+3n2−2−3n2=6+3n2−n−22=3n2−n+42⇒Sn=∑hk−1Tk=∑hk−1(3k2−k+4)2=12[∑hk−13k2−∑hk−1+∑hk−14]=32∑hk−1k2−12∑hk−1k+∑hk−12 =32[n(n+1)(2n+1)6]−12[n(n+1)2]+2n=n(n+1)(2n+1)−n(n+1)+8n4=n4[(n+1)(2n+1)−(n+1)+8]=n4[2n2+n+2n+1−n−1+8]=n4[2n2+2n+8]=n4[n2+n+4]×2Hence, Sn=n2[n2+n+4]