312+512+22+712+22+32+...nterms=?
6n2(n+1)
6n(n+1)
6(2n-1)(n+1)
3(n2+1)(n+1)
Explanation for the correct option:
Step 1. Find the nth term of given series:
⇒Tn=2n+1n(n+1)(2n+1)6=6n(n+1)
⇒Tn=61n-1n+1
Step 2. Find the sum of Tn:
Therefore, Sn=∑Tn=6∑1n-1n+1
⇒6∑1n-6∑1n+1
⇒6nn-6n+1=6-6n+1
⇒6nn+1
Hence, Option ‘B’ is Correct.
Find the sum to n terms of the series 12 + (12 + 22) + (12 + 22 + 32) + …