4x2+4√3x+3=0
On comparing the given equation with
ax2+bx+c=0,
we get, a=4,b=4√3 and c=3
By using quadratic formula,
x=−b√b2−4ac2a
we get, x=−4√3±√4B−4BB
⇒x=−−4√3B
⇒x=−√32
∴x=−√32
(4)
2x2+x+4=0
On comparing the given equation with
ax2+bx+c=0,
we get, a=2,b=1 and c=4
By using quadratic formula,
x=−b±√b2−4ac2a
we get, x=−1±√1−32B
⇒x=−1±√1−32B
⇒x=−1+√−31B or x=−1−√−31B
∴x=−1±31Bor−1−√−31B
As we know, the square of a number can never be negative.
Therefore, there is no real solution for the given equation.