3[sin4(3π2−α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5π−α)] =
(b) 3[sin4(3π2−α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5π−α)]
=3(−cos α)4+(−sin α)4−2cos6α+sin6α
=3(cos2 α + sin2 α)2 − 2sin2 α cos2 α − 2(cos2 α + sin2 α)3 − 3sin2 α cos2 α (cos2 α + sin2 α)
=3−6sin2 α cos2 α − 2 + 6sin2 α cos2 α=3−2=1
Trick: Put α=0 , the value of expressions remains 1 i.e., it is independent of α