The correct option is
A 0We know that
(1−x)n=nC0−nC1x+nC2x2−nC3x3+nC4x4−.......+nCn(−1)nxn
Put x=p5
So,
(1−p5)n=nC0−nC1p5+nC2p10−nC3p15+nC4p20−.......+nCn(−1)np5n
On multiplying with p3 both sides, we get
p3(1−p5)n=nC0p3−nC1p8+nC2p13−nC3p18+nC4p23−.......+nCn(−1)np8n
On differentiating w.r.t p, we get
3p2(1−p5)n−p3n(1−p5)n−15p4=3 nC0p2−8 nC1p7+13 nC2p12−18 nC3p17
+23 nC4p22−.......+8n nCn(−1)np8n−1
Put p=1
3(1−1)n−n(1−15)n−15=3 nC0−8 nC1+13 nC2−18 nC3+23 nC4−.......+8n nCn(−1)n
3 nC0−8 nC1+13 nC2−18 nC3+23 nC4−.......+8n nCn(−1)n=0
Hence, this is the answer.