3(sinx–cosx)4+6(sinx+cosx)2+4sin6x+cos6x=?
11
12
13
14
Explanation for the correct option:
Step-1: Simplify given data:
Given, 3(sinx–cosx)4+6(sinx+cosx)2+4sin6x+cos6x
=3(sinx–cosx)22+6(sin2x+cos2x+2sinxcosx)+4sin2x3+cos2x3=3sin2x+cos2x-2sinxcosx2+61+2sinxcosx+4sin2x+cos2xsin4x+cos4x-sin2xcos2x
Step-2: Apply properties sin2θ+cos2θ=1
=31-2sinxcosx2+61+2sinxcosx+41×sin2x+cos2x2-2sin2xcos2x-sin2xcos2x=31+4sin2xcos2x-4sinxcosx+6+12sinxcosx+41-3sin2xcos2x=3+12sin2xcos2x-12sinxcosx+6+12sinxcosx+4-12sin2xcos2x=13
Therefore, correct answer is option C