The given integral is, I= ∫ 0 π 2 sin 3 xdx .
Solve the integral,
I= ∫ 0 π 2 ( sin 2 x )sinxdx = 1 4 ∫ 0 π 2 ( 3sinx−sin3x )dx = 1 4 ( 3 ∫ 0 π 2 sinxdx − ∫ 0 π 2 sin3x dx )
Evaluate the limits,
I= 1 4 ( [ −3cosx ] 0 π 2 + [ cos3x 3 ] 0 π 2 ) = 1 4 ( −3cos π 2 +3cos0+ 1 3 [ cos 3π 2 −cos0 ] ) = 1 4 ( 3− 1 3 ) = 2 3
Hence, the given result is proved.