3a∫01(ax-1)(a-1)2dx=?
(a–1)+(a–1)-2
a+a-2
a–a-2
a2+1a2
Explanation for the correct option:
Step 1. Integrate the given equation:
∫013aax-1a-12dx=3a(a-1)2∫01ax-12dx
⇒3a(a-1)2∫01a2x2+1-2axdx
⇒3a(a-1)2a2x33+x-2ax2201
⇒3a(a-1)2a23+1-a
⇒a3+3a-3a2a-12
Step 2. Add and Subtract 1 on numerator:
⇒a3+3a-3a2-1+1a-12
⇒a-13+1a-12
⇒(a-1)+(a-1)-2
Hence, Option ‘A’ is Correct.