If 3sinθ+5cosθ=5, the value of 5sinθ−3cosθ is
Given :
3sinθ+5cosθ=5
Squaring on both the sides we get,
(3sinθ+5cosθ)2=52
9sin2θ+25cos2θ+30sinθcosθ=25 [∵(a+b)²=a²+b²+2ab]
9(1−cos2θ)+25(1−sin2θ)+30sinθcosθ=25 [∵sin²θ+cos²θ=1]
9−9cos²θ+25−25sin²θ+30sinθcosθ=25
−9cos²θ−25sin²θ+30sinθcosθ=25−34
−9cos²θ−25sin²θ+30sinθcosθ=−9
9cos²θ+25sin²θ−30sinθcosθ=9
25sin²θ+9cos²θ−30sinθcosθ=9
(5sinθ−3cosθ)²=9 ∵[(a−b)²=a²+b²−2ab]
(5sinθ−3cosθ)=√9
(5sinθ−3cosθ)=±3